Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 11(12): 2414-2420, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33329763

RESUMO

The glycoslated macrocyclic antibiotic fidaxomicin (1, tiacumicin B, lipiarmycin A3) displays good to excellent activity against Gram-positive bacteria and was approved for the treatment of Clostridium difficile infections (CDI). Among the main limitations for this compound, its low water solubility impacts further clinical uses. We report on the synthesis of new fidaxomicin derivatives based on structural design and utilizing an operationally simple one-step protecting group-free preparative approach from the natural product. An increase in solubility of up to 25-fold with largely retained activity was observed. Furthermore, hybrid antibiotics were prepared that show improved antibiotic activities.

2.
J Org Chem ; 83(13): 7180-7205, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29590752

RESUMO

The commercial macrolide antibiotic fidaxomicin was synthesized in a highly convergent manner. Salient features of this synthesis include a ß-selective noviosylation, a ß-selective rhamnosylation, a ring-closing metathesis, a Suzuki coupling, and a vinylogous Mukaiyama aldol reaction. Careful choice of protecting groups and fine-tuning of the glycosylation reactions led to the first total synthesis of fidaxomicin. In addition, a relay synthesis of fidaxomicin was established, which gives access to a conveniently protected intermediate from the natural material for derivatization. The first total synthesis of a related congener, tiacumicin A, is presented.

3.
J Org Chem ; 83(2): 604-613, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29278503

RESUMO

The Cu-free 1,3-dipolar cycloaddition of cyclooctynes and azides is an up-and-coming method in bioorganic chemistry and other disciplines. However, broad application is still hampered by major drawbacks such as poor solubility of the reactants in aqueous media and low reaction rates. It is thus of high demand to devise a fast and user-friendly strategy for the optimization of reaction conditions and reagent design. We describe a capillary electrophoresis (CE) study of reaction kinetics in strain-promoted azide-alkyne cycloadditions (SPAAC) using substrates with acidic or basic functionalities. This study reveals that the pH value has a significant effect on reaction rates as a result of changes in the reactants' charge state via protonation or deprotonation, and the concomitant changes of electronic properties. This novel experimental setup also enables the study of even more challenging conditions such as reactions in micelles and we did indeed observe much faster SPAAC reactions in the presence of surfactants. Careful combination of the above-mentioned parameters resulted in the identification of conditions enabling remarkable rate enhancement by a factor of 80. This electrophoretic method may thus serve as a versatile, fast and reliable tool for screening purposes in all research areas applying SPAAC reactions.

4.
Bioorg Med Chem ; 25(22): 6102-6114, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28284861

RESUMO

Naturally occurring pyridone alkaloids as well as synthetic derivatives were previously shown to induce neurite outgrowth. However, the molecular basis for this biological effect remains poorly understood. In this work, we have prepared new pyridones, and tested the effect of thirteen 4-hydroxy-2-pyridone derivatives on the components of the endocannabinoid system. Investigation of binding affinities towards CB1 and CB2 receptors led to the identification of a compound binding selectively to CB1 (12). Compound 12 and a closely related derivative (11) also inhibited anandamide (AEA) hydrolysis by fatty acid amide hydrolase. Interestingly, none of the compounds tested showed any effect on 2-AG hydrolysis by monoacylglycerol lipase at 10µM. Assessment of AEA uptake did, however, lead to the identification of four inhibitors with IC50 values in the submicromolar range and high selectivity over the other components of the endocannabinoid system.


Assuntos
Alcaloides/química , Piridonas/química , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Alcaloides/metabolismo , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Endocanabinoides/química , Endocanabinoides/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/metabolismo , Ligação Proteica , Piridonas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Células U937
5.
J Proteome Res ; 16(3): 1207-1215, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28176526

RESUMO

For mass spectrometry-based proteomic analyses, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) are the commonly used ionization techniques. To investigate the influence of the ion source on peptide detection in large-scale proteomics, an optimized GeLC/MS workflow was developed and applied either with ESI/MS or with MALDI/MS for the proteomic analysis of different human cell lines of pancreatic origin. Statistical analysis of the resulting data set with more than 72 000 peptides emphasized the complementary character of the two methods, as the percentage of peptides identified with both approaches was as low as 39%. Significant differences between the resulting peptide sets were observed with respect to amino acid composition, charge-related parameters, hydrophobicity, and modifications of the detected peptides and could be linked to factors governing the respective ion yields in ESI and MALDI.


Assuntos
Peptídeos/análise , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Pâncreas/citologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Anal Bioanal Chem ; 408(8): 2055-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26493978

RESUMO

Cysteine is unique among the proteinogenic amino acids due to its ability to form disulfide bonds. While this property is of vital importance for protein structures and biological processes, it causes difficulties for the mass spectrometric identification of cysteine-containing peptides. A common approach to overcome these problems in bottom-up proteomics is the reduction and covalent modification of sulfhydryl groups prior to enzymatic digestion. In this study, established alkylating agents and N-maleoyl amino acids with variable hydrophobicity were characterized with respect to a variety of relevant parameters and subsequently evaluated in a large-scale analysis using different ion sources. Depending on the compound, the ion source had a profound impact on the relative and absolute identification of cysteine-containing peptides. The best results were obtained by derivatization of the cysteine residues with 4-vinylpyridine and subsequent matrix-assisted laser desorption ionization (MALDI). Modification with 4-vinylpyridine increased the number of cysteine-containing peptides identified with any other compound using LC-MALDI/MS at least by a factor of 2. This experimental observation is mirrored by differences in the gas-phase basicities, which were computed for methyl thiolate derivatives of the compounds using density functional theory. With electrospray ionization (ESI), complementary use of reagents from three different compound classes, e.g., iodoacetamide, 4-vinylpyridine, and N-maleoyl beta-alanine, was beneficial compared to the application of a single reagent.


Assuntos
Cisteína/análise , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Alquilação , Sequência de Aminoácidos , Aminoácidos/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Humanos , Hidrólise , Iodoacetamida/química , Maleatos/química , Modelos Moleculares , Proteômica/métodos , Piridinas/química
7.
Angew Chem Int Ed Engl ; 54(25): 7431-5, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25925614

RESUMO

A molecularly defined copper acetylide cluster with ancillary N-heterocyclic carbene (NHC) ligands was prepared under acidic reaction conditions. This cluster is the first molecular copper acetylide complex that features high activity in copper-catalyzed azide-alkyne cycloadditions (CuAAC) with added acetic acid even at -5 °C. Ethyl propiolate protonates the acetate ligands of the dinuclear precursor complex to release acetic acid and replaces one out of four ancillary ligands. Two copper(I) ions are thereby liberated to form the core of a yellow dicationic C2-symmetric hexa-NHC octacopper hexaacetylide cluster. Coalescence phenomena in low-temperature NMR experiments reveal fluxionality that leads to the facile interconversion of all of the NHC and acetylide positions. Kinetic investigations provide insight into the influence of copper acetylide coordination modes and the acetic acid on catalytic activity. The interdependence of "click" activity and copper acetylide aggregation beyond dinuclear intermediates adds a new dimension of complexity to our mechanistic understanding of the CuAAC reaction.

8.
Beilstein J Org Chem ; 9: 2715-50, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24367437

RESUMO

The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is one of the most broadly applicable and easy-to-handle reactions in the arsenal of organic chemistry. However, the mechanistic understanding of this reaction has lagged behind the plethora of its applications for a long time. As reagent mixtures of copper salts and additives are commonly used in CuAAC reactions, the structure of the catalytically active species itself has remained subject to speculation, which can be attributed to the multifaceted aggregation chemistry of copper(I) alkyne and acetylide complexes. Following an introductory section on common catalyst systems in CuAAC reactions, this review will highlight experimental and computational studies from early proposals to very recent and more sophisticated investigations, which deliver more detailed insights into the CuAAC's catalytic cycle and the species involved. As diverging mechanistic views are presented in articles, books and online resources, we intend to present the research efforts in this field during the past decade and finally give an up-to-date picture of the currently accepted dinuclear mechanism of CuAAC. Additionally, we hope to inspire research efforts on the development of molecularly defined copper(I) catalysts with defined structural characteristics, whose main advantage in contrast to the regularly used precatalyst reagent mixtures is twofold: on the one hand, the characteristics of molecularly defined, well soluble catalysts can be tuned according to the particular requirements of the experiment; on the other hand, the understanding of the CuAAC reaction mechanism can be further advanced by kinetic studies and the isolation and characterization of key intermediates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...